Telegram Group & Telegram Channel
🧠 Градиентный спуск: когда сходимость гарантирована, а когда — нет

В линейной регрессии с функцией потерь в виде среднеквадратичной ошибки (MSE) задача выпуклая — это значит, что существует единственный глобальный минимум, и градиентный спуск (если не мешают численные ошибки) гарантированно к нему сойдётся.

🔁 Если расширить линейную регрессию, применяя нелинейные преобразования (например, полиномиальные признаки), или перейти к глубоким нейросетям, ситуация меняется: поверхность функции потерь становится невыпуклой, появляются локальные минимумы и седловые точки.

📉 В таких случаях градиентный спуск может:
▪️ сойтись к локальному минимуму
▪️ застрять на плато (участке с малыми градиентами)
▪️ не достичь глобального оптимума

💡 Что помогает:
▪️ оптимизаторы с моментумом (например, Adam, RMSProp)
▪️ адаптивное изменение learning rate
▪️ периодический «рестарт» обучения

⚠️ Подводный камень:

Можно ошибочно считать, что градиентный спуск всегда работает, как в линейной регрессии. Но в невыпуклых задачах сходимость к глобальному минимуму не гарантируется.

Библиотека собеса по Data Science



tg-me.com/ds_interview_lib/916
Create:
Last Update:

🧠 Градиентный спуск: когда сходимость гарантирована, а когда — нет

В линейной регрессии с функцией потерь в виде среднеквадратичной ошибки (MSE) задача выпуклая — это значит, что существует единственный глобальный минимум, и градиентный спуск (если не мешают численные ошибки) гарантированно к нему сойдётся.

🔁 Если расширить линейную регрессию, применяя нелинейные преобразования (например, полиномиальные признаки), или перейти к глубоким нейросетям, ситуация меняется: поверхность функции потерь становится невыпуклой, появляются локальные минимумы и седловые точки.

📉 В таких случаях градиентный спуск может:
▪️ сойтись к локальному минимуму
▪️ застрять на плато (участке с малыми градиентами)
▪️ не достичь глобального оптимума

💡 Что помогает:
▪️ оптимизаторы с моментумом (например, Adam, RMSProp)
▪️ адаптивное изменение learning rate
▪️ периодический «рестарт» обучения

⚠️ Подводный камень:

Можно ошибочно считать, что градиентный спуск всегда работает, как в линейной регрессии. Но в невыпуклых задачах сходимость к глобальному минимуму не гарантируется.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/916

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

How To Find Channels On Telegram?

There are multiple ways you can search for Telegram channels. One of the methods is really logical and you should all know it by now. We’re talking about using Telegram’s native search option. Make sure to download Telegram from the official website or update it to the latest version, using this link. Once you’ve installed Telegram, you can simply open the app and use the search bar. Tap on the magnifier icon and search for a channel that might interest you (e.g. Marvel comics). Even though this is the easiest method for searching Telegram channels, it isn’t the best one. This method is limited because it shows you only a couple of results per search.

The global forecast for the Asian markets is murky following recent volatility, with crude oil prices providing support in what has been an otherwise tough month. The European markets were down and the U.S. bourses were mixed and flat and the Asian markets figure to split the difference.The TSE finished modestly lower on Friday following losses from the financial shares and property stocks.For the day, the index sank 15.09 points or 0.49 percent to finish at 3,061.35 after trading between 3,057.84 and 3,089.78. Volume was 1.39 billion shares worth 1.30 billion Singapore dollars. There were 285 decliners and 184 gainers.

Библиотека собеса по Data Science | вопросы с собеседований from nl


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA